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Abstract
The object of this paper is to review the electronic conductance in double
quantum well systems. These are quantum well structures in which electrons
are confined in the z direction by large band gap material barrier layers, yet form
a free two-dimensional Fermi gas within the sandwiched low band gap material
layers in the x–y plane. Aspects related to the conductance in addition to the
research progress made since the inception of such systems are included. While
the review focuses on the tunnelling conductance properties of double quantum
well devices, the longitudinal conductance is also discussed. Double quantum
well systems are a more recent generation of structures whose precursors are
the well known double-barrier resonant tunnelling systems. Thus, they have
electronic signatures such as negative differential resistance, in addition to
resonant tunnelling, whose behaviours depend on the wavefunction coupling
between the quantum wells. As such, the barrier which separates the quantum
wells can be tailored in order to provide better control of the device’s electronic
properties over their single well ancestors.
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1. Introduction

The technological significance of efficient, small size and fast response electronic components
is responsible for much of the research in quantum well structures. The ability to grow high
quality crystalline semiconductor structures over the past decades has been made possible by
the molecular beam epitaxy (MBE) technique [1]. This technique ushered in the age of layered
semiconductor structures that are nearly perfect on an atomic scale and hence have dimensions
comparable to that of a traversing electron’s mean free path and the de Broglie wavelength.

Heterostructures [1, 2], quantum wells [3, 4] and superlattices [4, 5] are examples of low-
dimensional systems where size plays a fundamental role as regards the electronic properties
of two-dimensional electron gas (TEG) [6] devices. The realization of these, as well as one-
dimensional quantum wire [7] and zero-dimensional quantum dot [8] structures,were proposed
more than two decades ago [9].

The double quantum wells, which is the subject of this review, fall in the TEG category.
The essential advantage of a TEG system is that impurities can be removed from the plane of
the mobile electrons. The charge carriers can thus achieve high mobilities in, for example,
modulation doped structures consisting of GaAs/AlGaAs materials [10]. Mobilities greater
than 106 cm2 V−1 s−1 reported in the early 1980s had been surpassed with values exceeding
107 cm2 V−1 s−1 by the late 1980s and early 1990s [9–13]. These structures consist of
ultrathin layers of GaAs and AlGaAs grown on one another periodically. The materials’
different band gaps present discontinuities in real space. Electrons and holes in these quantum
well structures show one-dimensional behaviour normal to the layers and the quantization of
the carriers’ motions in this direction produces a set of discrete energy levels. This is not unlike
that presented in introductory quantum mechanical one-dimensional wells and barriers [14].
In the direction parallel to the layers the electrons manifest a two-dimensional behaviour.
The reduced dimensionality induces drastic changes in the electrical and optical properties of
quantum well structures. For example, referring to figure 1, where a quantum well structure
diagram of GaAs/AlGaAs is depicted, the introduction of impurities in the high band gap
AlGaAs layers, in such a way that the impurity nuclei are trapped while the carriers that are
introduced can migrate toward the low gap GaAs layers, is thus responsible for producing a
TEG at the interface. The high mobilities that are achieved in the modulation doped samples [9]
are due to the high density of electrons in the GaAs conduction channels (x–y plane) and the
reduced impurity scattering. The successful growth of high quality quantum well structures
was demonstrated in the early 1980s using different materials such as in GaAs/AlGaAs by
MBE [15], InGaAs/AlInAs by vapour phase epitaxy (VPE) [16] and organo-metallic chemical
vapour deposition (OMCVD) [17].

During the early 1970s, Esaki and Tsu [4, 18], in anticipation of advances in epitaxy,
proposed research on an engineered semiconductor superlattice. Here the authors envisioned
nanostructures with alternating layers of high and low gap materials, i.e. a series of quantum
wells (figure 1) adjacent to each other as a superlattice. Their analysis of the electron
dynamics in the z direction predicted unusual current–voltage characteristics, including
negative differential conductance and negative differential resistance (NDR) [18]. This refers
to a drop in current with an increase in voltage, i.e. if we write I = GV then the conductance,
G, corresponds to a negative slope in the I–V sample characteristics. Esaki et al [4, 19] found
that an MBE grown GaAs/GaAlAs superlattice indeed exhibited a negative resistance (1/G)
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Figure 1. A quantum well structure with two layers of the low gap GaAs material sandwiched
between two layers of the higher gap AlGaAs material. The quantized motion is along the z
direction.

in its transport properties. Led by the computation of the resonant transmission coefficient as
a function of electron energy for multibarrier structures from a tunnelling point of view [20],
Chang et al [21] observed resonant tunnelling in a MBE grown double-barrier quantum
system. The current and conductance versus voltage curves for their system is shown in
figure 2. The figure shows an inset with a double-barrier potential well system with two
resonances at energies E1 and E2. The meaning of resonant levels is that, if the thickness of
the barriers (80 Å) were made infinitely large, then those states would represent true states of
an electron in an attractive square well [22]. In figure 2 the resonant tunnelling occurs at the
current maxima for which the applied voltages are such that the Fermi energy of the electrode
coincides with the resonant states. The applied voltage bends the potential well systems and
the energy positions depend on the voltage according to solutions of the Schrödinger equation.
In their work [21] the resonant voltage positions are found at approximately twice the state
energies. At such voltage values the electrons tunnel unimpeded across the potential barrier,
from one electrode to the other. This is reasonable because if, for example, we assume a
one-level quantum well system with a resonant energy as a function of voltage written as
E ′

0 = − h̄2

2m 〈ψ ′| ∂2

∂x2 |ψ ′〉+ 〈ψ ′|Vb + V (z)|ψ ′〉 � E0 + 〈ψ|V (z)|ψ〉, where ψ ′ is the wavefunction
of the system in the presence of the voltage V (z) and ψ is the wavefunction of the system in
its absence, under the influence of the barrier potential Vb alone, with eigenstate E0, then for
small voltage with ψ ′ ∼ ψ , the energy shift is given by the average of the potential across
the well width d . Writing, V (z) = − eV

d z, we see that the energy shift E ′
0 − E0 ∼ − eV

2 ,
since 〈z〉 = d

2 , so that when E ′
0 approaches the Fermi level, EF , of the incident electron’s

side (E ′
0 = EF ≡ 0) a resonance would occur at approximately eV = 2E0. While Chang

et al [21] observed resonant tunnelling at low temperature, Sollner et al’s work clearly showed
large regions of NDR [23] mentioned earlier [18]. The significance of a NDR region in the
I–V characteristics of a device, as shown in figure 3, suggests that such devices are useful
as amplifiers and oscillators [23–26]. In fact, by the late 1980s oscillator frequencies in the
hundreds of gigahertz range were reported [26]. From a simple classical point of view, one
way to see how it is possible for a NDR device, with I–V characteristics similar to figure 3,
to give rise to charge oscillations is to write the device’s current versus voltage as

I = G(V )V , (1)
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where the conductance, G, is a function of the voltage, to find

d I

dt
= vd

(
V

dG

dV
+ G

)
dV

dz
, (2)

where vd is the electronic drift velocity. Using Poisson’s equation, E(z) = − dV
dz = q

ε
Ns(z),

with Ns the areal electron density at position z, we see that the electronic charge obeys the
equation

d2q

dt2
+ ω(z)2q = 0, (3)

where ω(z) ≡
√

vd(V dG
dV + G) Ns (z)

ε
, in the present understanding, is a frequency dispersion

relation which becomes imaginary for negative differential conductance (1/R) whenever
dG
dV < − G

V . The charge builds up within the sample at such a characteristic rate when it
is operated in the NDR region. The charge spike travels along the sample and then decays.
The actual number of spikes that reach from one side of the sample to the other is the charge
frequency associated with oscillators of this type; that is vd/�, where � is the sample length of
travel. Such oscillations in semiconductor devices have been of interest for many years [27]
in connection with Gunn diodes [28]. According to Brown et al [26], the maximum frequency
of operation of the resonant tunnelling type structures depends on the device’s I–V peak to
valley ratio (see figure 3). The higher the ratio the higher the operating frequency. Further
significant applications of resonant tunnelling structures include logic circuits and memory
cells [29] and single-electron transistors [30, 31].

A natural extension of a double-barrier tunnelling system is the two coupled wells or
triple-barrier system shown in figure 4. Here two individual wells are coupled through a
barrier. Depending on the thickness of the middle barrier the system’s eigenstates depend on the
wavefunction overlap between the two wells. In fact, the first observation of the energy splitting
obtained in a triple-barrier system, with a thin middle barrier, was reported over a decade ago
[32] using resonant tunnelling spectroscopy [5, 23]. The interest in this more recent class of
quantum wells is due to the ability to tailor the middle barrier and permit the investigation
of quantum phenomena [32], including electron–electron interactions [33] and the Coulomb
gap [34]. Furthermore, in order to improve the ability to control the tunnelling process and
thereby create transistor action, the third layer, i.e. the middle barrier, is added to the standard
double-barrier system, thus creating two separate wells [35]. These two quantum wells host
electrons whose behaviour is two-dimensional. Modulating the tunnelling between the two
wells allows the system’s conductance properties to be investigated [35, 36] in the so-called
double electron layer transistors [36]. Such devices still develop NDR due to their resonant
tunnelling features, have high peak to valley I–V properties and have been demonstrated to
show bistable memory [37], yet are an improvement over their double-barrier ancestors due
mainly to their middle barrier control layer. It has been recently reported that size-induced
strain in triple-barrier structures can be used to provide additional control over the quantum
coupling between the double wells, which in turn affects their conductance properties [38].

It should be noted that, while double quantum well systems come in triple [32] or single [35]
barriers, for example, in this review no rigorous distinction will be addressed between them
due to their similarity. As far as this review is concerned the difference in their electronic
behaviour is an open question. In section 2 we discuss theoretical approaches to the study
of transport applicable to resonant tunnelling systems. In section 3, typical calculations on
a double-barrier system are carried out which are later extended to the double well system
of interest here. The double-barrier calculations are performed in the presence of an applied
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Figure 2. Current and conductance characteristics of a double barrier structure of GaAs between
two Ga0.3Al0.7As, as shown in the energy diagram. Both the thicknesses and the calculated quasi-
stationary states of the structure are indicated in the diagram. Arrows in the curves indicate the
observed voltages of singularities corresponding to these resonant states [21]. Copyright (1974)
by the American Institute of Physics. Reprinted with permission of AIP and the authors.

Figure 3. An example of a typical current–voltage characteristic behaviour of a quantum well
device that exhibits negative differential resistance. The current peak position is related to the
quantized level structure of the device.
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Figure 4. Double well or triple-barrier system. The quantized motion is due to the confinement
along the z direction. Tunnelling occurs between the two wells through the middle barrier.

voltage and a comparison is made between theory and experiment. In section 4 extensions to
include the effect of the magnetic field are discussed and we conclude in section 5.

2. Theoretical approaches to transport

Since the discovery in the early 1960s of active semiconductor devices capable of converting
direct current to coherent microwave oscillations, one of the major efforts in semiconductor
technology has been the development of electronic devices operating at high power densities
and high frequencies while simultaneously being reduced in size. Gate lengths in the submicron
range [39] and even smaller can be achieved [9]. Because of the high electric fields and ultra-
small dimensions encountered in present semiconductor devices, the time scales involved
mean that major modifications are required to the traditional Boltzmann transport theoretical
approach [40–42].

The classical Boltzmann transport equation (BTE) has played a very significant role in the
early development of solid state physics. In the last decades as the semiconductor technology
downscales the integrated circuits into submicron regions, there has been a strong need to
develop fundamental approaches to quantum transport [40, 42]. In the BTE, the collision
terms are derived under the assumption that electron scattering occurs instantaneously. This
is a reasonable approximation when the mean time between collisions is large. However,
in small devices the duration of the collision process is finite, so that the use of the BTE is
questionable [42, 43]. Examples of challenging transport phenomena are the hot electron
effect [44, 45], transient transport [46], ballistic transport [47], velocity overshoot [48],
quantum size effect [49] and a host of various problems associated with hot carriers in
semiconductors [50]. In addition to Monte Carlo methods [51] and energy–momentum
equation schemes [46, 52] transport properties have been investigated theoretically by several
approaches [40, 42, 53]. Reviews on various schemes to investigate transport in miniature
scale systems have appeared in the literature over the years. Methods that make use of the
Kubo formula [54], the path integral [55], the Green function [56], the Wigner function [57]
and the Landauer formula (LF) [53, 58] have been discussed in the literature [53], including the
Monte Carlo approach [59]. For the purposes of this review we will concentrate on the methods
that, for the most part, have been applied to resonant tunnelling double-barrier systems and
could easily be extended to tunnelling conductance studies in double well systems. One of
these is the Wigner function approach [57] which was applied to double-barrier systems early
on [60], reviewed in the early 1990s [53, 61], and more recently applied to simulations of
quantum transport in resonant tunnelling systems [62–64]. Also of great use is the Landauer
formulation mentioned earlier [58] and which has gained popularity in recent years [65–68].
It is important to mention that, while much less popular, the path integral approach [55] has,
in fact, found applications [69] in our systems of interest, and similarly has a Monte Carlo
scheme [70]; these approaches, however, are not discussed in this review any further.
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2.1. Longitudinal conductance

This review is mainly focused on tunnelling conductance; however, it is important to discuss
significant conductance properties in double well systems in the longitudinal direction, i.e. the
direction along the quantum well layers (x–y plane). Under an applied voltage, electrons in a
semiconductor sample respond to produce a current proportional to the applied voltage. The
current is written as

I = GV , (4)

where the conductance is defined as

G = d I

dV
(5a)

and the average conductance as

G = �I/�V . (5b)

The conductance is equivalent to the inverse of the resistance or it can be related to the
conductivity of a sample by the relation G = σ A/� with A and � the sample area and length
of interest. The difference being a geometric factor. Its relationship to the mobility µ is

G = A

�
neµ, (6)

where n is the density of electrons and e is the electronic charge. The mobility is related
to the scattering lifetime, τ , as µ = e

m 〈τ 〉, where 〈τ 〉 is the averaged scattering lifetime
defined [71, 72] as

〈τ 〉 =
∑

k εkτk F ′(εk)∑
k εk F ′(εk)

, (7)

where F ′(εk) is the derivative of the Fermi distribution function with respect to the band energy
εk and τk is related to the scattering rate defined [71–73] as

1

τk
=

∑
k′

Wkk′ (1 − cos θkk′ ), (8)

with the scattering rate from state k to k ′ given by

Wkk′ = 2π

h̄
|Hkk′ |2δ(ε(k ′) − ε(k)) (9)

and Hkk′ is the matrix element due to the scattering potential responsible for limiting the
motion. This can be due to impurities, phonons, surface roughness, etc [72, 74–76]. The
longitudinal current density under an electric field E is J = nev where v = µE . We note
that in equation (9) the matrix element can be carried out with the full knowledge of the
problem’s wavefunction; that is, by a full solution of the Schrödinger equation. This will be
discussed below in section 3. Furthermore, there are two kinds of motions associated with a
double quantum well problem. One is the motion along the quantum well channels due to the
presence of a longitudinal field, say along the x or y direction in figure 4. The longitudinal
motion can actually be quite complicated. The reason is that the channels can contribute to
the motion in different ways. For example, the discovery of resistance resonance in the early
1990s [77] has given rise to a flurry of activity [78–81] in this area. The significance of that
work [77] can be summarized by the expression [82] for the conductivity:

σ = σ0(1 + Fµ), σ0 = e2n

m
τ, Fµ = µ2(1 + δ2)

(1 − µ2)(1 + δ2) + t2
, (10)
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Figure 5. Resistance versus gate bias characteristics (back-gated structure) at 4.2 K at different
values of the back-gate bias (VG B). The bias across the channel was 4 mV. The downward arrows
indicate the position of the resistance resonance: the upward ones show the starting point of the
second well depletion [77]. Copyright (1990) by the American Physical Society. Reprinted with
permission of APS and the authors.

with 1/τ = 1
2

[
1
τr

+ 1
τl

]
and τr , τl are associated with each well’s scattering lifetime as discussed

above. Also, δ is a measure of the resonant state splitting energy of each well, t is a measure
of their coupling and µ ≡ (τr − τl)/(τr + τl). Thus, when the coupling between the two wells
is very small, due to a wide or tall middle barrier, each well acts independently of the other.
In which case t → 0, Fµ → µ2

(1−µ)(1+µ)
and the conductivity is obtained as

σ = e2n

2m
(τr + τl). (11)

This indicates that the two wells act as if they were conductors in parallel with additive scattering
lifetimes. However, if the middle barrier is narrow or small and the two wells are more strongly
coupled, then t is large so that Fµ is small and we obtain

σ ∼ σ0 = τlτr

τl + τr
. (12)

In such a case the two wells act as if they were conductors in series with the scattering rates
now being additive as in Mathiessen’s rule [83]. Palevski et al [77] demonstrated the resistance
resonance by varying the applied voltage along the z direction in order to change the energy
splitting between the states in the wells. Their results are shown in figure 5. While the
above equations (7)–(9) were written in the Born approximation [72] and equations (10)–
(12) were obtained through the use of the Kubo formula [53, 54], as mentioned before other
approaches are possible [51–61]. Additionally, more specific methods applicable to study
transport properties in double wells have begun to appear in the literature [84, 85].

Other examples of problems dealing with the longitudinal motion of electrons in double
well systems include electron–electron interaction [33, 34, 86] studies, the frictional drag
between the middle barrier separated electrons in the absence of a magnetic field [87] and in
strong magnetic fields [88].
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2.2. Tunnelling conductance—the Wigner and Landauer approaches

The majority of the excitement associated with double quantum wells deals with the resonant
tunnelling characteristics as mentioned in the introduction. The electronic motion is now
along the z direction of figure 4. The interest now is in the tunnelling current. As
mentioned above, the Wigner distribution function [53, 57, 61–64] has been employed in
the study of resonant tunnelling systems. Here the starting point is the variable effective mass
Hamiltonian [60, 61, 63, 89] given by

H (z) = − h̄2

2m

d

dz

(
1

m(z)

d

dz

)
+ v(z), (13)

where v(z) is the double well potential, as will be discussed later below. The idea in the Wigner
method [89] is to write the Liouville equation for the density matrix as

∂ρ(z, z′)
∂ t

= i

h̄
(H (z) − H (z′))ρ(z, z′), (14)

with the density matrix given by

ρ(z, z′) =
∑

i

Pi�i (z)�
∗
i (z

′), (15)

where Pi is the i th state occupation probability and �i (z) is the i th state wavefunction. The
change of variables

Z = 1
2 (z + z ′), ξ = z − z′, (16)

is usually made in order to define the Wigner function as the Fourier transform of the density
matrix:

f (Z , k) =
∫ ∞

−∞
dξ eikξ ρ(Z + 1

2 ξ, Z − 1
2ξ). (17)

The partial differential equation that results for the Wigner function is given [60] by

∂ f

∂ t
= − h̄k

m

∂ f

∂z
− 1

h̄

∫ ∞

−∞
dk ′

2π
V (Z , k − k ′) f (Z , k ′), (18)

where

V (X, k) = 2
∫ ∞

0
dξ sin(kξ)[v(Z + 1

2ξ) − v(Z − 1
2ξ)]. (19)

In addition to normalizing the Wigner function and the density matrix, n(Z) = ρ(Z , Z) =∫ ∞
−∞

dk
2π

f (Z , k), so as to represent the electron density n(Z), so that f (Z , k) is solved self-
consistently, coupled to the Poisson equation

∂

∂ Z

(
ε
∂φ

∂ Z

)
= −e[�(Z) − n(Z)], (20)

where � is the impurity density and the potential φ(Z) is related to v(Z) through v(Z) =
−[ϒe(Z) − ϒe(0)] − e[φ(Z) − φ(o)], where ϒe is the electron affinity in the semiconductor
and with suitable boundary conditions [60]. Finally, the current density can be obtained from
the Wigner function as

J (Z) = e
∫ ∞

−∞
dk

2π

h̄k

m(Z)
f (Z , k). (21)

The popularity of the Wigner function approach stems from its resemblance to the
Boltzmann distribution function approach [71], with the basic difference that the Heisenberg
uncertainty principle is obeyed. Results obtained for the current density using the Wigner
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function in a resonant tunnelling system by Kim and Lee [63] will be shown in section 3. The
Landauer approach [58], in contrast to the Wigner function, is conceptually simpler. While
the LF has been rigorously obtained through the Kubo formula [65, 90], it is possible to obtain
it through the standard definition of average current [91]:


I = e Tr (n
v) = eA

(2π)3

∑
σ

∫
d3k Fσ (
k)
vσ (
k) = 2eA

(2π)3

∫
d3k F(
k)
v(
k), (22)

where Tr is the trace and the spin sum has been carried out, 
v(
k) is the velocity and F(
k) is the
Fermi distribution function. For the structures of interest in this review (figures 1 and 4), let
FA represent the equilibrium distribution on the left side of the structure where electrons are
incident from, and let FB represent that of the right side. The velocity is related to the band
energy as


v(
k) = 1

h̄

∇kε(k). (23)

Further, writing the total amplitude or probability of electron transmission from the A side
to the B side as FA(1 − FB)T (
k); that is, a product of the probability that a state on the A
side is occupied times the probability that a state on the B side is empty times the tunnelling
probability T (
k). Finally, replacing F(
k) in equation (22) with the above total amplitude and
using equation (23), we get the total current from the A to the B side as


IAB = 2eA

(2π)3h̄

∫
d3k TAB FA(1 − FB ) 
∇kε(k), (24)

with a similar expression for IB A for the current from side B to side A. Since by symmetry
TAB = TB A → T , the net current is


I = 
IAB − 
IB A = 2eA

(2π)3h̄

∫
d3k T (
k)[FA(
k) − FB (
k)] 
∇kε(k). (25)

If we write 
k = k‖‖̂ + k⊥⊥̂; that is, with parallel and perpendicular components as in a
cylindrical energy surface [91], then d3k = dSε dε/| 
∇kε(k)|, where dsε(= d2k‖) is a cylindrical
cap area of k space with the cylinder’s length dk⊥ = dε/| 
∇kε(k)|, we obtain the current as


I = 2eA

(2π)3h̄

∫
dSε

∫
dε T (k‖, ε)[FA(k‖, ε) − FB(k‖, ε)]n̂v(k‖,k⊥), (26)

where n̂v(k‖,k⊥) = 
∇kε(k)/| 
∇kε(k)| has been used. Furthermore, we write Fi (k‖, ε) =
(1 + exp[(εk‖ + ε − EFi + eφi)/K T ])−1, where εk‖ = (h̄k‖)2/2m, ε = (h̄k⊥)2/2m and φi

is the bias voltage applied on the side i which takes on the values A or B for the left and right
sides, respectively. In addition to neglecting the plane motion dependence of the transmission
coefficient, so that T (k‖, ε) → T (ε) and similarly for the Fi ’s, the two-dimensional integral
can be performed,

∫
dSε = (2π)2/A, to obtain the LF [65–68] for the current in the z direction

(n̂v → ẑ) as

IL F = 2eA

2π h̄

∫
T (ε)[FA(ε) − FB(ε)] dε. (27)

It is worth noting that, if in equation (26) we make the replacement for T (k‖, ε) → T (ε)

as done above, but keep F(k‖, ε) as shown, then it is possible to perform the integral using∫ ∞
0 dsε = ∫ 2π

0

∫ ∞
0 k‖ dk‖ dθ = 2πm

h̄2

∫ ∞
0 dε‖:∫ ∞

0
dSε[FA(k‖, ε) − FB(k‖, ε)] = 2πm

βh̄2 ln

{
1 + exp[−β(ε + eφA − EF A)]

1 + exp[−β(ε + eφB − EF B)]

}
= 2πm

βh̄2 F(ε),

(28)
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where F(ε) is referred to as the supply function [5, 76] and β = 1/K T , to obtain the standard
tunnelling theory (STT) total current in the z direction [5]:

IST T = em AK T

2π2h̄3

∫
dε T (ε)F(ε). (29)

Comparing equations (27) and (29) it is seen that the LF appears to ignore the dependence
on ε‖ in the Fermi distribution functions, which seems reasonable in the absence of coupling
between plane and transverse motion. This may perhaps be a more drastic approximation in the
presence of a magnetic field [92, 93]. We will come back to this subject later. Equation (27) is
generally referred to as the non-linear form of the LF [66]. There is a linear form that helps to
understand resonant tunnelling in a one-level system. For example, at low voltage differences
between the B and A sides of the device, we can replace the Fermi function difference in
equation (27) with

FA(ε) − FB(ε) � F ′
B(ε)�V , (30)

where �V = EF A − EF B − e�φ, with �φ = φA − φB . At low temperatures −F ′
B(ε) is a

delta function, and taking φB ∼ −�φ as well as EF B → EF , EF A ≡ 0, φA ≡ 0, so that
�V → −EF B − e�φ to obtain from equation (27) in this limit

I ≈ −e�V

π h̄

∫
T (ε)δ(ε − e�φ − EF ) dε = e�V

π h̄
T (EF + e�φ). (31)

That is, if EF + e�φ = Er , with Er being a resonant level at bias �φ in the quantum
well between the barriers, there will be a large contribution to the current. This is the same
resonant condition idea discussed earlier in the introduction. The resonant level, Er , depends
on the applied voltage however. This resonance condition is shown in figure 6. Nevertheless,
under general conditions, T (ε) is a function of the electric field and also the Fermi function
difference has wider implications. At any particular value of the electric field, the Fermi
function broadens as the temperature is increased and we expect the conductance will similarly
decrease with temperature as FA(ε) − FB(ε) � 1/T . For large electric field, E , we can write
FA(E) − FB(E) � FA(E), due to the vanishing of FB(E) at large field or voltage φ = E�,
with � the sample biasing length, so that the average conductance from equations (5) and (27),
in this limit, behaves as G ∼ 1/E .

Comparison between the LF, the Wigner function and the STT is carried out in the next
section where a numerical approach developed recently [94] will be employed.

3. Numerical applications

In this section a numerical approach to obtain the conductance [94] in quantum well systems
will be used. The approach has been tested and compared with an earlier transfer matrix
method [95] in good agreement. Below, results based on calculations using the LF and the
STT of equations (27) and (29) are shown. The results will ultimately be compared with
Wigner function results in a double-barrier resonant tunnelling system. Similar calculations
will be given for the double well system, where Wigner function results have not yet been
reported in the literature.

3.1. Non-self-consistent and self-consistent method

The Schrödinger equation for the general potential of figure 7 is broken into three parts, one
for each region shown in the figure. Regions I and II have plane wave solutions, and there
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Figure 6. The Fermi function difference, FA–FB , at low field and low temperature is shown to
overlap with a level in the well. The resonant condition is such that Er = EF + e�φ, where
�φ = φA − φB .

remains region II where the potential, V2(z), is assumed to be of any shape. In that region, we
write

− h̄2

2m

∂2

∂z2
ψ(ε, z) + V2(z)ψ(ε, z) = εψ(ε, z). (32)

Later, region II will be specialized to a specific shape, i.e. double barrier or triple barrier. We
next assume a solution of the form

ψ =




ψI = A1 exp(ik1z) + B1 exp(−ik1z) for z < α

ψI I = A2 f (z) + B2g(z) for α < z < β

ψI I I = A3 exp(ik3z) + B3 exp(−ik3z) for z > β,

(33)

for regions I, II and III of figure 7, respectively, and the functions f (z) and g(z) are to
be obtained as explained below. With the standard use of boundary conditions for the
wavefunction, the following relations are obtained [94]:(

A1

B1

)
=

(
t11 t12

t21 t22

)(
A3

B3

)
, (34)

and since there is no reflection from region III, B3 ≡ 0. The final results for the reflection and
transmission coefficients are given as

R = |t21|2
|t11|2 , T = 1 − R, (35a)

where

t11 = ei(k3β−k1α)

2

{[
f (α) +

f ′(α)

ik1

][
g′(β) − ik3g(β)

f (β)g′(β) − g(β) f ′(β)

]

+

[
g(α) +

g′(α)

ik1

][
f ′(β) − ik3 f (β)

f ′(β)g(β) − g′(β) f (β)

]}
, (35b)

t21 = ei(k3β+k1α)

2

{[
f (α) − f ′(α)

ik1

][
g′(β) − ik3g(β)

f (β)g′(β) − g(β) f ′(β)

]

+

[
g(α) − g′(α)

ik1

][
f ′(β) − ik3 f (β)

f ′(β)g(β) − g′(β) f (β)

]}
, (35c)
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Figure 7. A general potential barrier system, with V2(z) for α < z < β, sandwiched in between
materials A and B at electrostatic potentials φA and φB . The particles are incident from the left.

where ki =
√

2m(ε − Vi)/h̄2 and Vi is the potential associated with region i . The boundary
matched normalized wavefunctions of equation (33) for each of the regions I, II and III are

ψI

A1
= eik1 z +

t21

t11
e−ik1 z, z < α, (36a)

ψI I

A1
= A2

A1
f (z) +

B2

A1
g(z), α � z � β (36b)

and
ψI I I

A1
= 1

t11
eik3 z, z > β, (36c)

where the energy-dependent coefficients are

A2

A1
=

[
eik1α[g′(α) − ik1g(α)] + t21

t11
e−ik1α[g′(α) + ik1g(α)]

f (α)g′(α) − f ′(α)g(α)

]
, (37a)

B2

A1
=

[
eik1α[ f ′(α) − ik1 f (α)] + t21

t11
e−ik1α[ f ′(α) + ik1 f (α)]

f ′(α)g(α) − f (α)g′(α)

]
. (37b)

Finally, the values of the functions f (z) and g(z) and their derivatives at z = α, β, associated
with V (z) of figure 7, are obtained numerically using a Runge–Kutta [96] scheme with
appropriate initial guesses [94]. The effectiveness of this approach has been demonstrated
previously [94] with the additional inclusion of a variable effective mass.

Also, since the full wavefunction must obey the Landau normalization rule [73] for the
incident probability current, A1 = 1√

2πh̄
. In sections 3.2 and 3.3 we will refer to the above

method along with the use of equation (27) as the non-self-consistent Landauer formula (NSLF)
method.

It is possible to include self-consistency and the fact that the electronic effective mass
varies as a function of z in a realistic potential barrier system. In this case equation (32) is
replaced by the BenDaniel–Duke equation [97] in the z direction:

− h̄2

2

∂

∂z

1

m(z)

∂

∂z
ψ(ε, z) + [Vo(z) + Ve(z)]ψ(ε, z) = Eψ(ε, z). (38)
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Here, Vo(z) is as before and Ve(z) is the Hartree potential [98] that is obtained self-consistently.
It represents the contribution to the potential due to the electron’s motion in the field of other
electrons and neglecting exchange–correlation contributions to the potential [99] which can,
in principle, be included. The self-consistency is achieved through the above equation (38)
and the Poisson equation:

∂

∂z
ε(z)

∂

∂z
Ve(z) = −ρ(z), (39a)

with a z-dependent dielectric. The charge density is written as

ρ(z) = e2

[
N(z)

A
+ N−

a (z) − N+
d (z)

]
. (39b)

Here, N−
a and N+

d (z) are the ionized acceptor and donor volume concentrations. The electron
concentration is written as

N(z) = 1
2

∫ ∞

0
dε {nL(z, ε)FL (z, ε)ψL (z, ε)ψ∗

L(z, ε) + nR(z, ε)FR(z, ε)ψR(z, ε)ψ∗
R(z, ε)},

(40)

where the left and right sides of the potential Fermi functions are written as

FL ,R(ε) = (1 + exp [(ε−µL ,R)βT ])−1, (41)

with the use of the structure’s left and right side Fermi levels. The left Fermi level, µL , is
obtained through the charge neutrality condition

∫ L
0 ρ(z) dz = 0 for zero applied bias, where

L is the total sample length. On the right side, we assume the form µR = µL − eϕbias(L), as
in [100]. We refer to this, along with the use of equation (27), as the SLF.

The left and right wavefunctions, ψL (ε, z) and ψR(ε, z), of equation (40) are obtained as
outlined above; however, in equation (34) we set B3 = 0 for waves travelling rightward and
set A1 = 0 for waves travelling leftward. In equation (40) we made use of the 2d density of
states [24], so that nL = nR = Am∗/π h̄2, where m∗ is the GaAs effective mass, consistent with
the structure of interest here. Further, the ionized donor and acceptor temperature-dependent
concentrations are to be used in equation (39b) as given by [83]

N+
d = ND

1 + 2e−(εD−µL )β
, N−

a = ND

1 + 2e−(εA−µL )β
, (42)

with εA,D the acceptor and donor binding energies. The self-consistency in the Hartree
potential Ve(z) is achieved by first obtaining an initial trial wavefunction with Ve(z) = 0.
The wavefunction is substituted into equations (39) and (40), so that the Poisson equation is
solved with Ve(0) = 0 and Ve(L) = −eφbias(L) boundary conditions, where φbias(z) = Ez
and E is the applied electric field. The resulting potential is used in equation (38) which in
turn gives a new wavefunction. The process is repeated until the change in Ve(z) is less than
about 0.5 meV. Once the final Hartree potential is obtained, V (Z) = Vo(z) + Ve(z) is used in
equation (35) to obtain the transmission coefficient corresponding to the SLF, with the current
calculated by the LF, equation (27). In the NSLF Ve(z) is taken to be zero and the transmission
coefficient is effected from the start using equations (35) and (27) only. Thus, the SLF differs
from the NSLF by the presence of the Hartree potential Ve(z). Below, both methods are
included in order to provide a comparison with the work of [63]. Further, a comparison is also
included between the current obtained through the LF and the current obtained through the
use of the STT.
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3.2. Application to double-barrier (single well) system

We work with dimensionless units: energy is given in units of εb = me4/[2h̄2(4πε0 KGaAs)
2] =

5.247 meV, distance is in units of ab, where ab ≡ k−1
b =

√
h̄2/2mεb = 101.9 Å, with the

gallium arsenide’s dielectric constant, KGaAs = 13.18, and effective mass, m∗ = 0.067 me,
where me is the mass of a free electron. The electric field has units of Eelb = εb/eab =
5.04 kV cm−1 and the unit of temperature is Tb = εb/KB = 60.897 K. The conductance unit
is Gb = e2/h̄ = 2.43 × 10−4 �. The electrostatic potential difference between the A and B
sides of the sample is �φ = E� in units of φb = Eelbab with � being the distance between the
α and β points in figure 7. The double-barrier potential, V (z), of figure 7 takes the form

V (z) =




V1 for z < α

V2 − (z − α)E for α < z < α + w1

V3 − (z − α)E for α + w1 < z < α + w1 + w2

V2 − (z − α)E for α + w1 + w2 < z < α + w1 + w2 + w3

V3 − (β − α)E for z � α + w1 + w2 + w3,

with α = −3ab, β = α + w1 + w2 + w3. Below, first we use the NSLF method and take
the barrier widths w1 = w3, then we vary their size. We also take V1 = V3 = 0 and
vary the barrier height V2 as well as the width w2. Figure 8 shows the case of V2 = 1εb,
w1 = 3ab = w2, EF = 3εb. Below the calculations are for the average conductance and from
here on this is referred to just as conductance. The obtained conductance, versus the electric
field, using equations (5) and (27), at 10 K is shown in figure 8(a). It reaches a maximum
at E = 0.2125Eelb and decays as the field is increased. We show the potential V (z) for
various values of the electric field in figure 8(b). In figure 8(c), the Fermi function difference,
FA(ε) − FB(ε), which plays an important role in equation (27) is shown for four field values,
including the field value at which the conductance of figure 8(a) peaks. In figure 8(d) we show
the transmission coefficient corresponding to the potential cases shown in figure 8(b). We see,
first of all, that at E = 0.0625Eelb there is a resonant level and a Ramsauer type of resonance
in figure 8(d). At this value of the field, however, the conductance is increasing due to the high
overlap between FA − FB at the high energy part of the transmission. As the field increases to
E = 0.2125Eelb, the function FA − FB overlaps more of the transmission spectrum, causing
the conductance to reach its maximum value. Beyond this field value, the conductance does
not experience an extra appreciable contribution since FA − FB no longer broadens and begins
to remain constant. The transmission coefficient increases: however, the conductance begins
to decrease as 1/E , as mentioned earlier.

Based on the results of figures 8, we should expect more interesting behaviour as the levels
in the well are increased accompanied by a decrease in the barrier widths. This is indeed the
case as shown in figures 9. Here, we let w1 = 1ab, V2 = 3εb = EF and we let the electric
field vary as E = [0.4/(β − α)]Eelb . Also, the well width takes on the values w2 = 3, 5 and
10 in units of ab. The potential plots are shown in figure 9(a) with corresponding transmission
coefficients in figure 9(b). The wells support 2, 3 and 5 levels, respectively. The conductance
for each potential case is given in figure 9(c). As the well width becomes greater, we see that
the conductance peak shifts to a lower field due to the increased number of level resonances
in the transmission. In particular, the case of w2 = 10ab experiences further structure. As
expected, the Fermi function difference, FA − FB , obtains a high overlap with the highest
energy level in the well at the corresponding value of electric field for the first conductance
peak. The dip that occurs at a slightly higher field is due to no appreciable further increase in
the overlap between FA − FB and T (ε) for this field value. However, as the field is increased,
we can see a second peak, in figure 9(c) for w2 = 10ab, which is due to the strong overlap
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Figure 8. Calculations for a double-barrier system with V2 = 1εb , w1 = w3 = w2 = 3ab ,
EF = 3εb . (a) The average conductance in units of Gb versus the electric field in units of Eelb at
10 K. (b) The potential V (z) versus z for field values of 0.0625, 0.2125, 0.5 and 2.0 Eelb . (c) The
Fermi function difference FA–FB versus ε (εb) for field values of figure 8(b). (d) The transmission
coefficient versus ε (εb) for the field values of figure 8(b).

between FA − FB and two large contributions of T (ε), due to two levels for this wide well
case. This is expected because, as E is increased, FA − FB broadens as explained before in
figure 8(c). With a further field increase, the conductance tends to decay as 1/E and this factor
wins out over any further increase in overlap contribution due to the fact that T (ε) changes
with electric field. At much higher field, the well no longer supports energy levels; however,
Ramsauer oscillations continue to play a role and this is the reason for slight deviations from
the 1/E behaviour in the conductance.

It appears that, while the conductance should decrease in temperature, it should still give
evidence of interesting structure versus field, especially for wide wells and low field in a similar
way as shown for the T = 10 K case. This is indeed the case, as can be seen in figure 10,
where the T = 77 and 300 K conductances, for the w2 = 10ab well, are compared with
the 10 K result. While the conductances do decay with E and T , we see that a structure
does appear. At higher temperature, there seem to be more oscillations because the FA − FB

function difference is rather broad and encompasses a large overlap with the T (ε) spectrum;
nevertheless, the oscillations are not strong due to the 1/T dependence of the conductance.
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Figure 9. Calculations for a double-barrier system at 10 K with w1 = w3 = 1ab , V2 = 3εb = EF

and an electric field that varies as E = 0.4/(β − α) in units of Eelb , where α and β are the left
and right edges of the potential barrier. Here the well widths used are w2 = 3, 5 and 10ab . (a) The
potential versus z (ab) for each of the three well widths. (b) The transmission coefficient versus
ε (εb) for each of the three well widths. (c) The average conductance in units of Gb versus the
electric field in units of Eelb for each of the three well widths.

We next work with the specific, but more realistic, potential of [63]; accordingly, the
following parameters are used: NA ≡ 0, ND = 2 × 1024 m−3, ED = 16.4εb, V1 = 0.0,
V2 = 0.27 eV, V3 = V1, α = 175 Å, w1 = 28 Å, w2 = 45 Å, w3 = w1, β = 276 Å. The
GaAs regions (V1) lie between 0 < z < α, α + w1 < z < α + w1 + w2 and β < z < L,
where L = β + α. The Al0.3Ga0.7As barrier (V2) regions exist for α < z < α + w1 and
α + w1 + w2 < z < β. The effective mass and dielectric constants for the material compounds
used are mGaAs = 0.067 me, mAlAs = 0.15 me, KGaAs = 13.18, KAlAs = 10.06. In the case
of Alx Ga1−xAs, the corresponding value of effective mass and dielectric constant is obtained
by a linear combination of the compound parameters with concentration x for AlAs using a
virtual crystal approximation [101]. Finally, the self-consistently obtained Fermi levels for
temperatures of 10,77 and 300 K areµ = 16.383, 16.278 and 15.976 in units of εb, respectively.

In figure 11(a), the result obtained for the self-consistent electron charge distribution
in units of a−3

b , equation (40), versus z in units of ab, for voltage values of 0.1, 4.5 and
50.5 in units of φb, and a temperature of 300 K is shown. We see here that, as the field
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Figure 10. The average conductance (Gb) versus E (Eelb) calculations for a double-barrier system
of w2 = 10ab at T = 10, 77, and 300 K. The rest of the parameters are as in figure 9.

is increased, the charge gets depleted, as z increases, from the system as indicated by the
variation versus field. It is interesting to note that the conductance is correspondingly lower
for the higher field value as will be seen in figure 11(c). In figure 11(b), the full potential,
V (z) = Vo(z) + Ve(z) in units of εb, which includes the self-consistently obtained Hartree
contribution, is plotted versus z (ab) for two values of the voltage, 4.5φb and 50.5φb, at 300 K
(the non-self-consistent case is shown as a broken line). Here the self-consistent Hartree
contribution tends to make the potential vary in a nonlinear fashion, in contrast to the linear
behaviour of simply superimposing an electrostatic potential due to a constant electric field.
The Hartree term causes the transmission coefficient to change dramatically versus energy
compared to the case of the NSLF. In figure 11(c), we compare the conductance in units of
Gb versus electric field (Eelb) for three methods at 77(300) K, i.e. the NSLF 1(4), the SLF
2(5) and the STT 3(6) mentioned in the previous section. The STT and the NSLF are closer
to each other at high temperature, but at low temperature there is more contrast between them.
The reason is that the STT has a small temperature dependence. The NSLF and the SLF
both show a moderate temperature dependence marked by the increase in conductance at low
temperatures. This is consistent with our earlier discussion in figures 7–9. The STT, however,
shows a slightly higher conductance at higher temperature. This behaviour contrasts with
that of the Landauer approaches and is attributed to the difference in the way each weighs
the transmission coefficient in calculating the current as discussed in section 2. This trend
continues for lower temperature. The main difference between the SLF and the NSLF is that,
because of the self-consistent Hartree potential contribution, the SLF shows a peaking of the
conductance that is different from the way the NSLF behaves at low field. For this particular
system, there is a level in the well at about 18εb. This level moves down as the electric field
is increased. In the SLF, the level moves down much faster with the electric field than it does
for the NSLF. Further, the conductance is higher at higher fields in the SLF, due to a consistent
contribution to the transmission coefficient from the Ramsauer-like resonances, than in the
NSLF. At very high fields both conductances begin to drop again, however, as expected in our
earlier discussion.
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Figure 11. Calculations for a realistic structure potential of AlGaAs of [63]. (a) The self-consistent
electronic charge distribution in units of a−3

b versus z in units of ab , for bias voltage values of 0.1,
4.5 and 50.5 in units of φb at 300 K. (b) The full potential, V (z) = Vo(z) + Ve(z), in units of
εb , which includes the self-consistently obtained Hartree contribution, versus z(ab) for two values
of the voltage 4.5φb and 50.5φb at 300 K (the non-self-consistent case is shown as a broken
curve). (c) The average conductance in units of Gb versus electric field (Eelb) for three methods
at 77(300) K, i.e. the NSLF 1(4), the SLF 2(5) and the STT 3(6).

Finally, a comparison between the Landauer approach and the Wigner function distribution
scheme of [63] in figure 12. The figure shows a comparison for the current density versus
bias voltage for a GaAs/Al0.3Ga0.7As double-barrier system. We use the potential parameters
of [63] as mentioned above. For comparison purposes we use the doping density of the GaAs
well, 2 × 1018 cm−3, to get an electron well areal concentration of Ns = 9 × 1011 cm−2.
Figure 12 shows [63]’s current density results for their Wigner distribution function schemes,
UDS-3 (filled circles) and UDS-4 (open circles), corresponding to variable and constant
effective masses. The Landauer current density results, for the SLF 1(3) and the NSLF 2(4)
at T = 10(300) K, using equation (27) with J = Ns I , which include the position-dependent
effective mass, are shown. Our current densities increase initially versus voltage due to a
resonant level (∼99 meV) contribution in T (ε) which lies above the Fermi level (86.4 meV)
at zero field, but moves down and below the Fermi level at higher field. For the field value
corresponding to about 0.8 V, the level is below zero in the SLF so that its current experiences a
sudden drop for both temperatures. The NSLF, however, continues to get a current contribution
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Figure 12. The current density versus voltage for the potential of [63] at T = 10 and 300 K. The
curves labelled 1, 2, 3 and 4 are our LF results at 10(300) K for the SLF 1(3) and the NSLF 2(4).
The Wigner function schemes, labelled KL-UDS-3 (filled circles) and KL-UDS-4 (open circles)
of [63] are shown for comparison.

from the level because its potential does not include the Hartree field. As the voltage increases,
current density begins to increase again due to Ramsauer resonances playing a strong role in
T (ε) at energy values below the Fermi level, with the NSLF showing more structure due to
its different potential form. This is not surprising in view of our previous discussion. The
comparison is rather interesting since the Landauer calculations are less time consuming. We
do note that the Wigner function results are very different, particularly in magnitude and shape.
In the case of the LF approaches here, i.e. the SLF (curves 1, 3) and the NSLF (curves 2, 4),
the decrease in current density for higher temperature is expected as discussed in figure 10
for low field values. We also note that the Wigner distribution function result is probably not
sensitive to variations in the details of the transmission coefficient as in the LF cases. This is
the main reason for the difference in the current comparison. Finally, note the shift in current
maximum with higher temperature in the LF approaches. This is due to the broadening in the
Fermi distribution function.

3.3. Application to the triple-barrier (double well) system

The first evidence of tunnelling between two purely 2D systems separated by a single barrier
was reported in the late 1980s [102]. The early work of Zohta et al [32], for a triple-barrier
system, demonstrated the significance of tailoring a barrier that would separate electrons in
two different quantum wells. Interesting I–V characteristics were observed in that work [32]
including NDR properties and high peak to valley ratios. Here, the numerical approach of the
previous subsection is applied to the triple-barrier system shown in figure 13. Figure 13(a)
shows the effect of varying the middle barrier height. In this example the potential used is such
that there are three barriers and two wells. The end barriers have a fixed height of 1εb and the
middle barrier is shown to change from zero to 2εb in steps of 1εb in order to see the effect on
the wavefunction and later the conductance. The barriers use a width of 1εb and the wells have
a width of 3.5εb. The Fermi level is at about 0.9εb. Since samples have conducting contacts
beyond the end barriers, the electron wavefunction is free, which is not shown in the figure.



Topical Review R163

The effect of the middle barrier is to raise the energy of the resonant states, as can be seen in
figure 13(a). In addition, the higher the middle barrier is, the smaller is the overlap between the
two wells as expected. In figure 13(b) for an applied field of 0.4Eelb, one sees that the smaller
and no middle barrier cases involve free motion. The case of the 2εb barrier, however, does
have a resonant state, but the wavefunction has a free electron shape due to resonant tunnelling
at this field value. The effect of the middle barrier height on the transmission coefficient is
shown in figure 14. As the electric field is increased from zero in figure 14(a) through 0.4Eelb

in figure 14(b) to 0.6Eelb in figure 14(c), the transmission coefficient experiences a higher
contribution due to resonance, but experiences the least contribution at off resonance as shown
in figure 14(c). This in essence demonstrates the significance of the middle barrier. In fact,
figure 15 shows clearly the effect discussed earlier [32], i.e. the conductance experiences a
double peak value as calculated using both the LF and the STT methods. The STT seems to
have a smaller magnitude. The reason the double well, triple-barrier, system has high peak to
valley conductance is due to the special resonance condition associated with the middle barrier,
as mentioned in figure 14. At the appropriate field value, the middle barrier contributes to
resonant tunnelling, but at an off-resonant field it actually scatters the electron wavefunction
and causes the conductance to drop. Figure 15 demonstrates the tailoring of the middle barrier.
The double peak is due to the fact that, as the field is much higher, the middle barrier tends
not to affect the conductance any further so it is closer to the value without a middle barrier.
Figure 16 shows the effect of including the Hartree term and self-consistency to the double
well potential. The self-consistency tends to lift the middle barrier as shown in figure 16(a) for
the voltage values of 0.1, 1 and 4.5φb. The corresponding electron charge distribution for this
system is shown in figure 16(b) which also includes a higher field value curve. The shape of
the charge distribution for this system is to be contrasted to those of the double-barrier system
(figure 11(a)). Finally, the SLF conductance is shown in figure 17. The shapes are similar to
the NSLF ones of figure 15 but shifted slightly higher in energy due to the contribution from
the Hartree potential.

4. Inclusion of the magnetic field

The tunnelling experiments of Smoliner et al [102], where electrons tunnel from a TEG well
to another, provided the means to investigate the effect of superimposing a magnetic field on
a structure [103, 104]. The magnetic field direction has a dramatic effect on the tunnelling
current. In the case of a field applied in the z direction or parallel to the tunnelling current, that
is, perpendicular to the interfaces, has the effect of quantizing the electron motion in the x , y
planes giving rise to Landau levels. Early evidence of such effect was demonstrated for the case
of GaAlAs–GaAs–GaAlAs heterostructures [105] and reported later for GaAs/GaAlAs double
well systems [103]. Applying a magnetic field in the direction parallel to the interfaces, that
is, perpendicular to the tunnelling direction, has the effect of significantly changing the I–V
characteristics, such as, for example, shifting the NDR region to higher voltages [104, 105]
and broadening the resonant peaks [106]. In both magnetic field configurations, energy and
momentum conservation play an important role in the I–V characteristics [105, 107].

4.1. Magnetic field in the direction of the tunnelling current

Starting from a general form of a one-electron Hamiltonian in the presence of a magnetic field
and a confining potential in the z direction, ignoring spin,

H = 1

2m
( 
p + e 
A)2 + V (z), (43)
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Figure 13. Double well potential system with middle barrier. (a) States shown are for (curve a)
zero εb , (curve b) one εb and (curve c) two εb heights of two states (1, 2). The second state is
similar for all three barrier sizes. (b) As in (a) for a field value of 0.4Eelb . The higher barrier
state (curve c) is a resonant level on the first well.

and specializing to a magnetic field parallel to the tunnelling current, 
B = Bzk̂, with the vector
potential given by, 
A = Ay ĵ , where Ay = Bzx , i.e. the Landau gauge [73], as can be checked
by 
B = 
∇ × 
A, the Hamiltonian becomes

H = 1

2m
[p2

x + (py + eByx)2 + p2
z ] + V (z). (44)

This corresponds to free electron motion in the y direction, harmonic motion in the x direction
and confined motion in the z direction. In fact, if we assume a solution to the Schrödinger
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Figure 14. (a) Transmission at zero field for middle barrier cases of 0εb , 1εb and 2εb . (b) As in (a)
for a field value of 0.4Eelb . (c) As in (a) for a field value of 0.6Eelb .

equation, Hψ = εψ , in the form

ψ = f (z)g(x) exp(iky y) (45)

we find the differential equations obeyed by g(x) and f (z) in the form

− h̄2

2m

[
∂2

∂x2
−

(
ky +

eBzx

h̄

)2]
g(x) = εN g(x), (46a)

− h̄2

2m

[
∂2

∂z2
+ V (z)

]
f (z) = εn f (z), (46b)

where the total energy is given by ε(n, N) = εn + εN . The functions g(x) are the standard
harmonic oscillator wavefunctions [73] in the x direction whose centre of motion depends on
the momentum in the y direction, −ky. The eigenvalues εN = (N + 1

2 )h̄ωc with ωc = eBz/m
are the Landau levels mentioned before. In the z direction, the shape of f (z) depends on
the confining potential V (z). For resonant states in a quantum well, such as, for example, a
double-barrier structure of section 3, the functions f (z) can be obtained numerically and the
resonant energies εn generated. Thus, for the present magnetic field configuration, under an
additional applied voltage, as in section 3, the resonant tunnelling condition is shifted by a
magnetic field dependent energy. The resonant tunnelling discussed previously in section 3
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Figure 15. Average conductance (Gb) for the three barrier cases of figures 13 versus field. The STT
curves are lower in magnitude than the NSLF. Curves a, b and c correspond to the three potentials
of figure 13.

now becomes EF + e�φ = ε(n, N). In analogy to the B = 0 case, resonant tunnelling
does not occur for a voltage below a value �φ1. In addition, resonant tunnelling does not
occur beyond a second voltage �φ2 because of the shape of the density of states, which is
peaked around a given Landau level. Instead the voltage would need to be increased further in
order to get additional resonant tunnelling from a higher Landau level. The I–V shape of the
double-barrier system develops an oscillatory character as shown in figure 18 [105], referred
to as resonant magneto-tunnelling. Not surprisingly, a similar oscillatory behaviour is found
in the double well one-barrier system of Smoliner et al [103] where each well supports its own
set of Landau levels. The transitions obtained by the authors between different Landau levels
versus applied voltage is shown in figure 19 [103], where, in the absence of scattering due to
energy and momentum conservation, the applied voltage adjusts the subbands of each well
energetically according to the resonance condition ε1(n, N) = ε2(m, N), for wells 1 and 2,
respectively, assuming k‖(kx, ky) is conserved which is responsible for the Landau level index
conservation. For fields higher than about 5 T, however, complications in the experimental data
arise due to the occurrence of a Hall voltage, in addition to impurity and surface roughness
scattering mechanisms which make transitions possible between Landau levels of different
indices [108].

4.2. Magnetic field in the plane of the layers

In an extension of their earlier work [35] on tunnelling conductance in a system with two GaAs
wells separated by a AlAs barrier, Eisenstein et al [93] performed similar studies between the
two wells as a function of an applied magnetic field parallel to the 2D planes. The conductance
was measured without an applied bias. Their results are shown in figure 20. According to their
simple model [93, 109], as the magnetic field increases the conductance experiences changes in
behaviour depending on the overlap of each well’s Fermi surface. To first order in perturbation
theory, the energies associated with each well are written as [93]

ε1 = E0,1 + h̄2(k2
x + k2

y)/2m, (47a)

ε1 = E0,2 + h̄2((kx − kB)2 + k2
y)/2m, (47b)
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Figure 16. (a) The double-barrier potential with and without the self-consistent Hartree contribution
for voltage values of 0.1, 1.0 and 4.5 in units of φb . (b) Electron charge distribution versus position
for various field values and middle barrier of 1εb in the self-consistent calculation.

where kB = eBd/h̄ with d the separation between the wells and B the magnetic field in the y
direction parallel to the well planes. When the magnetic field has zero value, tunnelling with
energy and momentum conservation occurs when E0,1 = E0,2, i.e. the ground state quantum
energies due to the z direction confinement match. Increasing the magnetic field changes the
position of the Fermi surface of the second well, with respect to the first, which is centred at
kx = kB whose radii are determined by the electron populations N1 and N2; thus tunnelling
with conserved energy and momentum occurs only at the intersection of these circles, as shown
in figure 20 [93]. A more complete picture can be obtained by considering a confined TEG,
as in the previous subsection, but with a magnetic field in the x direction as in the work of
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Figure 17. Self-consistent average conductance (Gb) using the LF versus electric field (Eelb).

Figure 18. Conductance versus total voltage applied to sample A (see [105]) for various magnetic
fields. The voltage drop between an electrode and the centre of the quantum well is half of the
total voltage. The traces shown were taken at 0.55 K but no difference was found with data taken
at 4.2 K [105]. Copyright (1986) by the American Physical Society. Reprinted with permission of
APS and the authors.

Demmerle et al [108]. The Hamiltonian of this system is given by

H = 1

2m
[p2

x + (py − eBx z)2 + p2
z ] + V (z). (48)

If we choose a wavefunction of the form ψ = f (z) exp(iky y) exp(ikx x), the Schrödinger
equation results in a differential equation for the function f (z) given by
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Figure 19. (a) Band structure of typical samples. En and E ′
0 are the subbands in the inversion layer

and the accumulation layer, EF is the Fermi level. (b) Schematic figure of the sample geometry.
I is the tunnelling current and Vg is the corresponding gate voltage. R2D EG represents the series
resistance in the inversion layer and VH is the Hall voltage at the gate contact. (c) I–V and dI/dV
curves for one typical sample (no 1816/13). The magnetic-field-induced structure in dI/dV is
indicated by arrows [103]. Copyright (1989) by the American Physical Society. Reprinted with
permission of APS and the authors.

− h̄2

2m

∂2

∂z2
f (z) +

[
e2 B2

x

2m
(z − z0)

2 + V (z)

]
f (z) = εn(Bx, ky) f (z), (49)

where the total electron energy from Hψ = εψ is written as

εn,Bx ,ky ,kx = εkx + εn(Bx, ky), (50)

with εkx = h̄2k2
x/2m and z0 = h̄ky/eBx . It can be seen that the presence of the magnetic field

in the plane of the layer (perpendicular to the tunnelling current) has the effect of adding a
shifted parabolic potential to the original confining potential V (z) whose curvature depends
on the value of the field Bx [110]. It is possible to write the eigenvalues in equation (49) to
lowest order in perturbation theory in the form

εn(Bx, ky) � − h̄2

2m

〈
∂2

∂z2

〉
0

+
e2 B2

x

2m
(〈z〉0 − z0)

2 + 〈V (z)〉 +
e2 B2

x

2m
(〈z2〉0 − 〈z〉2

0), (51)

where 〈· · ·〉0 refers to the average value carried out with the unperturbed z-dependent envelope
function f0(z) in the absence of a magnetic field. If one neglects the last term, known as the
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Figure 20. (a) Tunnel conductance versus magnetic field at T = 0 K. The 2d densities are 1.5
and 1.58 × 1011 cm−2 for the upper and lower quantum wells, respectively. The calculated critical
field is indicated. Insets depict an idealized cross section through sample, showing ohmic contacts
(hatched) and gate (shaded) and a schematic conduction-band diagram of the DQW. (b) Tunnel
conductance versus ratio of upper to lower 2DEG densities at T = 1.3 K for several magnetic
fields. Lower 2DEG density is fixed at about 0.90 × 1011 cm−2 while the upper 2DEG density
is swept by biasing the central top gate. A constant background has been subtracted from each
trace. Calculated critical densities are indicated. Features at the extreme left are associated with the
imminent depletion of the upper 2DEG [93]. Copyright (1991) by the American Physical Society.
Reprinted with permission of APS and the authors.

diamagnetic shift [108], the above energy can be written as

εn(Bx, ky) = εn +
e2 B2

x

2m
(〈z〉0 − z0)

2, (52)

where εn is the energy due to the V (z) confining potential in the absence of a magnetic field.
We can see, therefore, that equations (50) and (52) yield the approximate result discussed
earlier [93] in equations (47) if 〈z0〉 → d , with kx and ky appropriately interchanged and the
extension is made to the two well system as in that work.

Lyo and Jones [110] showed that further insight into this field configuration can be gained if
in equation (48) one assumes a parabolic confining potential, that is, letting V (z) → 1

2 mzω
2
0z2,
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in which case equation (48) becomes, including appropriate effective masses,

H → p2
x

2mx
+

1

2m y
(py − eBx z)2 +

p2
z

2mz
+

1

2
mzω

2
0z2, (53)

which can be rewritten as [110]

H → p2
x

2mx
+

p2
y

2m∗
y

+
p2

z

2mz
+

1

2
mz�

2
0(z − bpy)

2, (54)

where m∗
y = m y

�2
z

ω2
0
, �2

z = myω
2

mz
+ ω2

0, b = ω
mz�2

z
, and ω = eB

my
. The Schrödinger equation for

such a Hamiltonian has an exact solution in the form, ψnz ,kx ,ky = �nz (z−z0) exp[i(ky y +kx x)],

where the �nz (z − z0) are harmonic oscillator solutions in the z direction centred at z0 = ωh̄ky

mz�
2
z

and eigenvalues ε(nz, kx , ky) = h̄�z(nz + 1
2 )+ (h̄kx )2

2mx
+ (h̄ky )

2

2m∗
y

. This indicates that the effect of the

magnetic field in the direction parallel to the TEG layer, under a harmonic confining potential
in the z direction, has the effect of producing a field-induced shift in the energy level. The
electrons behave like nearly free particles in the x–y plane with a field-dependent enhanced
effective mass in the y direction. This model clearly helps to understand how the resonant
tunnelling characteristics, such as the NDR regions, shift with an applied magnetic field in the
case of a double-barrier system [105]. For the two well system, later work [111] extended their
earlier [110] research and used a differential transmission model for the tunnelling conductance
with results that compared reasonably well with experiment, under a zero applied bias. In
the work of Rainer et al [106] the conductance for a double well GaAs/AlGaAs system was
investigated under an applied in-plane magnetic field in the presence of a bias voltage. Figure 21
shows a typical result in which the in-plane magnetic field is responsible for a broadening of the
resonance structure in the I–V characteristics because tunnelling is allowed for a broad range
of energies. All peaks which correspond to transitions into higher unoccupied subbands of
their inversion channel shift to higher energies and become asymmetric [106]. The model used
to explain their results is similar to that of equations (50) and (52), as discussed before [108] for
a two well system and the additional term due to an external bias, in contrast to the Eisenstein
et al [93] approach, as mentioned in connection to equations (47) for zero bias.

It is important to mention that, in connection to applied magnetic fields in double well
systems, the resistance resonance effect mentioned earlier [77] has also been shown to have
a magnetic field dependence, referred to as magnetoresistance [80]. For example, in a
configuration when the magnetic field is in the direction of the plane of the layers,a longitudinal
resistance is observed at a critical field Bc when the current is perpendicular to this field, which is
absent when the current is parallel to it. This effect, not surprisingly, is attributed to a difference
in the mobilities of the two wells. In that work [80], a Boltzmann equation approach [83],
using the symmetric properties of the electron subband dispersion curves, was used to explain
the observed phenomena. On the same topic, Berk et al [112] studied the behaviour of the
resistance resonance [77] as a function of an in-plane magnetic field. The authors found that
the in-plane field destroys the coupling between the quantum wells leading to the resistance
resonance. Further, the width of the resonance is sensitive to an electron’s scattering rate. An
in-depth analysis of that work [112] using a Boltzmann kinetic equation approach was later
provided [113].

Finally, it is worth noting that, while quantum oscillations in the conductance are due to
inter-well tunnelling between Landau levels with the same quantum number [104, 114] in a
purely perpendicular magnetic field (B⊥, tunnelling direction), a parallel magnetic field (B‖,
plane direction) does give rise to conductance oscillations also [115]. This is due to B‖ induced
oscillations in the overlap integral between harmonic wavefunctions of the quantum wells.
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Figure 21. Two typical I (Vb) curves recorded at T = 15 K for B = 0 T (left scale) and B = 0.3 T
(right scale). The arrows mark the resonance-peak positions [106]. Copyright (1995) by the
American Physical Society. Reprinted with permission of APS and the authors.

5. Conclusion

This review’s purpose is to familiarize the reader with the main aspects and interesting points
associated with the transport properties of double quantum well systems. The wells consist of
two-dimensional (x–y direction) electron gases confined in the z direction. They are separated
by a barrier which can be tailored and permits the investigation of quantum phenomena.
While the review has mainly been focused on tunnelling conductance aspects between the
wells, mention has been made of longitudinal transport properties. In the review, the Wigner
function approach, which has been largely applied to double-barrier resonance tunnelling
systems, has been compared to the relatively simple approach based on the LF, which in turn
was used on an example of a triple-barrier system’s conductance. A method to obtain the
double well system’s wavefunctions was included in which a self-consistent Hartree potential
was taken into account in the presence of an electric field. The review includes work in the
literature associated with the investigation of the conductance in double well systems in the
presence of a magnetic field in the direction of the tunnelling current and perpendicular to it.

This review has not made an attempt to cover topics such as electron correlations in high
magnetic fields [116], problems associated with the Coulomb gap [34], the role of electron–
electron interactions on electron lifetimes [33, 86, 117, 118], the drag effect [33, 87, 88], the
Josephson effect [119] and conductance inhomogeneities related to interface roughness [120]
and current distributions [121] in double well systems. Finally, it is important to add that there
appears to be a need for more research regarding the fundamental difference in the various
transport properties discussed in this review between the double well systems with a single
barrier, as in for example [35, 77, 87, 93, 102–104], and those with triple barriers, as for
example [32, 38, 69, 122], as originally proposed by Smoliner et al [102] and Zohta et al [32],
respectively.
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